The American Society of Plastic Surgeons reported that 133,320 face lifts were performed in 2013, up 6 percent from 2012, making face lifts the fifth most popular cosmetic surgery procedure.1

“A young face is not an old face with tight cheek skin.”2 Compartments of fat lose volume in time, and deflated facial skin (found superficial to facial spaces) droops across grooves (that outline these spaces) in regions of ligamentous density.3–5

Previous authors have outlined five superficial and two deep facial fat compartments.6 The curves and fullness of youth ultimately give way to the deflated and wrinkled appearance of aging. Restoring aesthetic facial anatomy considers tissue repositioning and volume replacement in the middle to upper thirds of the face, along with volume removal in the neck and jowls, where lower facial third radial expansion occurs (Fig. 1).5,7–11 Volume loss also occurs in skin and bone.

The remaining anatomical discussion will focus on a three-dimensional appreciation of the facial nerve in areas of potential risk for division, the great auricular nerve, the facial spaces, and an update on facial ligamentous anatomy since the writing of the last Maintenance of Certification article.

Disclosure: Dr. Derby has no financial information to disclose. Dr. Codner receives direct, ongoing funding that is used for the purpose of supporting research project expenses, has a consulting relationship with Mentor Corporation (Santa Barbara, Calif.) and Ulthera, Inc. (Mesa, Ariz.), and receives royalties for books published by Quality Medical Publishing and Elsevier.

Supplemental digital content is available for this article. Direct URL citations appear in the text; simply type the URL address into any Web browser to access this content. Clickable links to the material are provided in the HTML text of this article on the Journal’s website (www.PRSJournal.com).
Facial Nerve

The two-dimensional trajectories of the temporal and marginal mandibular branches of the facial nerve are well documented.12–14 Multiple studies have evaluated the two-dimensional course of the temporal branch along a line 0.5 cm below the tragus to a point 1.5 cm above the lateral brow.15–20 These branches are at greatest risk for injury in the temporoparietal, preauricular, and mandibular angle regions.15

A thorough understanding of three-dimensional facial nerve anatomy, relative to the lamellar facial planes, makes sub–superficial musculoaponeurotic system (SMAS) dissections far less imposing.21 The SMAS is to the temporoparietal fascia what the parotid-masseteric fascia is to the superficial layer of the deep temporal fascia. All fascial layers are adherent at the arch. The adherence extends 2 to 3 cm above the arch as the “inferior temporal septum.”21 The nerve courses deep to the adherence and superficial to the periosteum at the arch level. It remains deep and protected by the parotid-masseteric fascia for 2 to 3 cm above the arch (Fig. 2).16,22 These principles explain why temporal branch injuries do not occur with careful division of the SMAS above the arch in the high-SMAS technique, and have not occurred in over 930 face lifts performed by the senior author (M.A.C.).
The course of the marginal mandibular nerve follows an “80/20 rule.” After exiting the parotid, and while posterior to the facial vessels, the marginal mandibular branch is found above the mandibular border in 80 percent of specimens and 1 to 3 cm below the border in 20 percent. It typically exits the inferior edge of the parotid gland at the level of the mandibular angle, and remains safely deep to the parotid-masseteric fascia and deep fascia of the masseter along its anteriorly directed course. In the less likely event that it exits inferior to the mandibular border, it runs anteriorly over the digastric muscle and capsule of the submandibular gland, and then superficially, to enter the buccal

Fig. 2. (Above, left) The trajectory of the temporal branch is demonstrated. Note that the “singular” temporal branch divides into two or three branches across the arch. The dotted line depicts the area of superficial and deep fascial adherence, known as the inferior temporal septum. The adherence extends 2 to 3 cm above the arch. The blue dot depicts the sentinel vein. (Below) As the nerve crosses the arch, it remains deep to the parotid-masseteric fascia, which blends with the fibroareolar innominate fascia. The nerve transitions from its protected location, deep to the parotid-masseteric fascia to its location on the deep aspect of the temporoparietal fascia, 2 to 3 cm above the arch. (Above, right) A zone extending anteriorly from the mandibular angle to the oral commissure, 1 cm above and 2 cm below the mandibular border, defines the area requiring extreme diligence in dissection deep to the platysma and SMAS to avoid marginal mandibular branch injury. This zone also correlates with the location of greatest risk of injury to the cervical branch. (Reprinted from Owsley JQ, Agarwal CA. Safely navigating around the facial nerve in three dimensions. *Clin Plast Surg.* 2008;35:469–477, with permission from Elsevier.)
space at the anteroinferior border of the masseter muscle (deep to the platysma) (Fig. 2).

Great Auricular Nerve

The great auricular nerve is the most commonly injured nerve in face lifting. It derives from the C2/C3 spinal nerve roots, and traverses the posterior triangle of the neck before crossing the posterior border of the sternocleidomastoid approximately 6.5 cm below the external auditory canal. It then runs parallel and posterior to the external jugular vein, remaining deep to the platysma. The platysma is typically absent along the posterior border of the sternocleidomastoid, placing the nerve at greatest risk for injury in this location.

Facial Spaces

The triangular midcheek, following loss of youthful convexities, separates into three distinct surface segments (i.e., lid-cheek, malar, and nasolabial) separated by grooves (i.e., palpebromalar groove, nasojugal groove, and midcheek groove) (Fig. 3).

Spaces separate superficial and deeper facial layers, and serve as glide planes over which superficial soft tissues move to generate facial expression. The laxity that accompanies facial aging causes superficial tissues to sag over the broad facial spaces (i.e., preseptal space, prezygomatic space, premasseteric space, masticator space, and oral cavity), yet remain attached by stout retaining ligaments (i.e., orbitomalar, zygomatic, and upper masseteric ligaments) at the perimeter of spaces.

The spaces are relatively bloodless, safe dissection planes, given that nerves and vessels pass within and deep to the ligaments that outline their perimeters (i.e., transverse facial artery perforator through the zygomatic ligament and zygomatic branch of the facial nerve near the zygomatic and upper masseteric ligaments) (Fig. 4).

Fig. 3. Surface anatomy of facial aging. The tear trough/nasojugal groove, palpebral-malar groove, and midcheek groove occur secondary to underlying periorbital and cheek retaining ligament attachments to overlying skin. (From Alghoul M, Codner MA. Retaining ligaments of the face: Review of anatomy and clinical applications. Aesthet Surg J. 2013;33:769–782, © 2013 by The American Society for Aesthetic Plastic Surgery, Inc. Reprinted by permission of SAGE Publications.)
The confusing nomenclature assigned to facial ligament classification systems (i.e., septae, cylinders, patches, adhesions, and direct or indirect dermal attachments), along with eponymous references, have been abandoned in the senior author’s practice in favor of more anatomically relevant terms to guide surgical dissection. These include temporal, periorbital, cheek, and mandibular retaining ligaments of the face. The need for facial ligament division during facial rejuvenation surgery has been debated. Mendelson has stated that “a prerequisite for effective lifting or repositioning of the superficial composite tissue is adequacy of surgical release of the retaining ligaments—the restraining effects of the ligaments would limit the benefits of tissue lifting to only within the boundaries of that particular space.” Whether ligaments retain their youthful stout dimensions, or lengthen throughout the aging process, is unclear. The impact of their release on the repositioning of aging facial tissues, however, should be considered.

Subcutaneous extensions of ligaments into the dermis result in dimpling, particularly in the location of the mandibular ligament, and can result in postoperative patient dissatisfaction if not adequately released. It is unnecessary to divide the mandibular ligament in the sub-SMAS plane to generate improved jowl contours.

Adequate sub-SMAS release of the cheek retaining ligaments affords maximal movement of ptotic tissues distal to the point of release, creating a smooth, pleasing contour following SMAS flap redraping (Fig. 5). Overzealous attempts at midface plication, without ligamentous release, can result in excessive SMAS tension and resultant abnormal grooves, and midfacial and neck bulges. An adequately dissected and/or repositioned SMAS flap will demonstrate youthful contours of the midface, jowl, and neck before skin flap redraping. Skin flaps rarely conceal the abnormalities that result from an inadequately mobilized and/or positioned SMAS layer.

![Relationship of Facial Nerve Branches to Retaining Ligaments of Face](image-url)
PREOPERATIVE ASSESSMENT AND PATIENT SAFETY

Gender

The incidence of postoperative hematoma after face lift is 4 to 8 percent for men and 1 to 3 percent for women. Gender therefore has a significant association with hematoma after face lift.29–31

Hypertension

The association between hypertension and postoperative hematoma after face lift is well established; therefore, preoperative blood pressure control is considered as important as intraoperative and postoperative blood pressure control for hematoma risk reduction.31–33

Anticoagulants, Antiplatelet Agents, and Nonsteroidal Antiinflammatory Drugs

The association of anticoagulants, antiplatelet agents, and nonsteroidal antiinflammatory drugs with postoperative hematoma after rhytidectomy is well known; therefore, their use is discontinued for 2 weeks before surgery.31,32
Ultimately, the decision to stop, bridge, or continue a medication that predisposes to perioperative bleeding, but that may be essential for cardiovascular risk reduction, should be made in conjunction with a cardiologist, internist, or hematologist. The authors use the 2005 Caprini risk-assessment model on all patients. Use of chemoprophylaxis in patients who score a 7 or greater is considered. From our perspective, the hematoma risk associated with chemoprophylaxis use in facial rejuvenation surgery is prohibitive. Patients who exceed a score of 7 before facial rejuvenation surgery should not undergo general anesthesia, and operative time should be limited. All patients receive mechanical prophylaxis, including perioperative use of an antiembolic compression hose and sequential compression devices.

Herbal Medications and Supplements

The cosmetic patient population uses herbal medications and supplements more commonly than the general public. Many of these medications predispose to bleeding, volume depletion, and/or postoperative sedation. A “top 10” list of herbal medications for patients to avoid perioperatively has been described, and includes chondroitin, ephedra, echinacea, glucosamine, ginkgo biloba, goldenseal, milk thistle, ginseng, kava, and garlic.

Smoking

Skin flap necrosis is 12 times more common in smokers who undergo a face lift. A large, recent meta-analysis demonstrated that smoking doubles to triples the odds of developing wound necrosis, dehiscence, and surgical-site infection. Environmental tobacco exposure may also be a preoperative risk factor for skin necrosis after face-lift surgery, and spousal/partner smoking cessation should be suggested during preoperative assessment.

The optimal duration of smoking cessation before surgery is 4 weeks, with each week of cessation progressively reducing operative risk. Nicotine replacement therapy can double a patient’s chances of stopping smoking, and has been shown to reduce wound healing complications to levels comparable to that of smoking cessation alone. Medical aids to promote smoking cessation are available. If a surgeon feels a smoking cessation plan was not followed, urine cotinine testing can be conducted. This quick, inexpensive assay has a sensitivity of 98 percent.

VARIATIONS IN TECHNIQUE

“Facelifts have more similarities than differences in their basic approach.” Periauricular skin incisions, varying degrees of undermining, SMAS manipulation, and skin redraping comprise the standard description of most face-lifting techniques. Century-old publications describe the principles of skin-only face lifts. Techniques subsequently evolved after Skoog’s description of a dense connective tissue layer deep to the skin surface in 1974, identified as the SMAS by Mitz and Peyronie. SMAS manipulation allowed for more durable results, tension diversion away from skin closure, and superficial fat repositioning. The senior author has found that the high-SMAS lift offers the most durable, most pleasing jawline and cervicomental angle possible, making this his preferred technique. The following descriptions offer perspective of the established pros and cons of the widely recognized face-lifting techniques.

Subcutaneous Face Lift

Subcutaneous lifting heralds from century-old techniques. The lift may vary from a skin pinch to wide undermining that permits flap elevation and repositioning in a single vector. Although it can be performed rapidly, with a respectable safety profile, its longevity is limited by normal skin physiology—stress relaxation and creep. Most abnormal sequelae of face lifting (i.e., tragal distortion, hairline displacement, pixie ear deformity, and lateral facial sweep) can be correlated with relying on skin tension during closure. A youthful face is not “tightly pulled.” Subcutaneous flap elevation is one component of our approach to face lifting (Fig. 6). (See Video, Supplemental Digital Content 1, which demonstrates skin flap elevation from the fixed/mobile SMAS along with its postauricular dissection. This video is available in the “Related Videos” section of the full-text article on PRSJournal.com or at http://links.lww.com/PRS/B908.)

Subcutaneous Face Lift with SMAS Manipulation

Mobile SMAS manipulation created understanding that facial shape could be changed by suturing, (re)suspending, and supporting deep soft tissues. The S-lift described by Fulton et al. and the minimal access cranial suspension described by Tonnard et al. rely on purse-string suture lifting of the neck, jowl, and/or midface. A plethora of SMAS plication techniques exist, generally differing in the vectors applied to the mobile SMAS (Fig. 7). Advocates suggest reduced
complication rates and recovery times compared to more aggressive SMAS flap procedures. Nerve ligature with resultant neurapraxia, cheese-wiring of suture through tissues, traction dimpling, and longevity of support are possible.

Lateral SMASectomy

The removal of a strip of SMAS, 2 to 4 cm in width, parallel to the nasolabial fold, along a trajectory toward the lateral canthus and overlying the anterior portion of the parotid gland, has proved advantageous in our hands for facial thinning in patients with “heavy” faces. As Baker described, the strip is excised immediately superficial to the deep facial fascia (in the same plane as a SMAS flap). Advocates cite advantages over simple SMAS plication, including cheek ligament (masseteric and zygomatic) release during the SMAS strip excision. Plication pulls on unreleased facial ligaments. Facial nerve branches are at risk when dissection extends anterior to the anterior border of the parotid, and midfacial/malar pad lifting may be difficult to achieve or sustain.

SMAS Flap: Extended and High

Dual-plane approaches, incorporating both a subcutaneous and a SMAS flap, have proved effective for neck, jowl, and midface lifting (Figs. 8 and 9). Differential tension between the two flaps avoids reliance on skin tension...
for shaping, hairline displacement, and the lateral sweep and wrinkle abnormalities of skin flaps set in a vertical direction. The SMAS flap is inset in a superolateral vector, and the skin flap is inset in a lateral vector. The SMAS flap becomes more fragile as dissection is carried anteriorly. Facial nerve branches are at risk, but can be easily avoided with the assistance of tumescent infiltration placed at the start of the case (Fig. 10) (See Video, Supplemental Digital Content 2, which demonstrates marking and elevation of the high-SMAS flap atop the parotid-masseteric fascia, with preservation of facial nerve branches. This video is available in the “Related Videos” section of the full-text article on PRSJournal.com or at http://links.lww.com/PRS/B909.)

The extended and high-SMAS flaps are designed to rejuvenate the midface through malar fat pad elevation after detachment of the malar fat pad from upper lip elevators. Infrorbital fill and lower eyelid support are benefits, and can be particularly advantageous when used as an adjuvant approach for treating lower lid retraction. Although fat grafting is commonly used for malar region augmentation in conjunction with one’s chosen technique, we have not regularly incorporated its use in practice. The high-SMAS technique’s mobilization of malar fat, and relocation to its proper anatomical location, has met our and our patient’s expectations of midface rejuvenation. Supplementary fill with volumizing filler, if necessary, can be used. When doing so, we use aesthetic judgment to optimize fill contours, rather than deliberately focusing on fill of one facial compartment relative to another. The high-SMAS technique also offers the advantage of firm SMAS flap fixation to the deep temporal fascia superior to the zygomatic arch, and can be supplemented with a SMAS transposition flap for neck contouring (Fig. 11). (See Video, Supplemental Digital Content 3, which demonstrates SMAS-platysma flap insetting to establish facial contours before skin redraping. This video is available in the “Related Videos” section of the full-text article on PRSJournal.com or at http://links.lww.com/PRS/B910.)

Deep Plane, Composite, and Subperiosteal Face Lifting

Deep plane lifting of the skin, subcutaneous tissue, and SMAS as a single flap was established by Tord Skoog in 1974.²⁷ His work, and Owsley’s
in 1977, opened the door to multiple variations of SMAS manipulation. The lifting of all tissue layers as a single unit, however, limits movement to a unidirectional plane. Concerns for facial nerve injury are comparable to all techniques that incorporate sub-SMAS dissection. Hamra’s composite lift combines lifting of the orbicularis oculi, malar fat, and platysma unit. The technique affords midfacial rejuvenation through superomedial orbicularis–malar fat repositioning, which is not offered by the deep plane technique alone. Subperiosteal approaches are enhanced through the use of endoscopic instrumentation. The technique offers avoidance of facial nerve branches, but offers little improvement in neck contour and has little to no effect on facial skin.

Final Note on Technique Selection

Facial structure and framework should be established before redraping the skin flap. The skin flap should simply lie across the foundation that the SMAS lift and ancillary procedures have established. Closing the skin under tension leads to unnatural and untoward outcomes. Excellent results can be achieved with the high-SMAS technique (Fig. 12). We offer the following as a summary of patient assessment and technique selection. In the primary thin-faced patient, the high-SMAS technique is used for its added benefit of malar augmentation. Patients with heavy jowls,
and round faces, undergo a lateral SMASectomy. This technique offers the dual benefit of facial thinning and locating the vector of SMAS pull closer to the heavy jowl to elicit change. Secondary/tertiary face-lift patients undergo a 90-degree SMAS-plication along the arch and preauricular regions.

Video 2. Supplemental Digital Content 2 demonstrates marking and elevation of the high-SMAS flap atop the parotid-masseteric fascia, with preservation of facial nerve branches. This video is available in the “Related Videos” section of the full-text article on PRSJournal.com or at http://links.lww.com/PRS/B909.

Fig. 11. (Above, left) Extent of high-SMAS flap elevation. (Above, right) High-SMAS flap after postauricular flap division, and before inset and postauricular flap transposition. (Below, left) Postauricular SMAS flap transposition for supplemental neck contouring. (Below, right) High-SMAS flap after complete inset.
ComplIcAtIons: eMphAsIzing pRevenTIon

Hematoma

Hematoma is the most common serious complication following face lift. A 2014 meta-analysis based on 41 studies identified a 1.4 percent incidence of expanding hematoma after face lift. Most hematomas occur in the first 12 to 24 hours after surgery. General anesthetic use does not appear to be a predictive risk factor. No evidence exists to demonstrate that hematoma rates differ among common face-lifting techniques.

Blood Pressure Control

Maricevich et al. identified target blood pressure goals to guide perioperative care. Preoperative systolic blood pressure greater than 160 mmHg and intraoperative peak pressures greater than 165 mmHg were predictive factors for hematoma. Initiation of a perioperative blood pressure control regimen has been shown to significantly reduce the incidence of postoperative hematoma after face lifts.

Clonidine is a centrally acting alpha-agonist antihypertensive also used in the treatment of attention deficit hyperactivity disorder. We routinely use one dose of clonidine 0.1 mg in the recovery unit, followed by twice-a-day dosing to keep systolic blood pressure less than 140 mmHg. Anecdotally, we have noted reduction in postoperative analgesic requirements and nausea/vomiting, along with notable anxiolysis.

Ancillary Techniques That May Minimize Risk: Fibrin Glue, Quilting Sutures, and Tumescent Infiltration

A meta-analysis, including three randomized controlled trials, demonstrated that fibrin glue does not consistently reduce hematoma rates. Neto and colleagues reduced their incidence of hematoma from 12 percent, in patients that received epinephrine-containing infiltration, to 0 percent in patients receiving quilting sutures alone after undergoing cervicofacial rhytidectomy. The intraoperative attributes of tumescent infiltration, before rhytidectomy, include easier dissection of surgical planes in relatively bloodless fields, along with a reduction in postoperative edema and ecchymosis. Comparative study has not shown that hematoma rates differ with or without the use of tumescent infiltration.

Treatment

An emergent return trip to the operating room is frequently required for expanding hematomas. Untreated hematomas result in flap edema, ecchymosis, and flap necrosis. Bedside treatment with appropriate analgesic and anxiolytic control, and antiseptic, can be considered in cases of smaller, unilateral, early postoperative hematomas, before the formation of a firm coagulum.

Venous Thromboembolism

The American Society of Plastic Surgeons has established venous thromboembolism risk reduction guidelines based on the 2005 Caprini risk stratification tool. Contrary to the findings
of the Venous Thromboembolism Prevention Study, Durnig and Jungwirth demonstrated a significantly increased risk of hematoma after rhytidectomy in patients that received chemoprophylaxis. Treated patients had a 16.1 percent incidence of hematoma, compared with the 1.1 percent incidence in controls. Symptomatic venous thromboembolism rates did not differ.

Facial Nerve Injury

Injury to the facial nerve occurs in 0.5 to 2.6 percent of face lifts. Although the buccal branch has been previously cited as the most commonly injured nerve branch, cross-innervation with the zygomatic branch makes clinical sequelae unlikely. Temporal and marginal branch injuries result in patient anxiety and abnormal facial presentation. If brow ptosis and/or lip/oral commissural elevation persists for more than 6 weeks, one may consider surgical intervention. Botulinum toxin can be used to temporize brow/oral symmetry during the waiting period. Brow lifting and/or division of the functional deep angularis oris muscle are definitive surgical treatment options.

Fig. 12. Preoperative and postoperative results from the frontal (above) and lateral (below) views using the high-SMAS technique.
Cervical branch injury is often inconsequential; however, in patients in whom the cervical branch innervates both the platysma and deep angularis oris in continuity, “pseudo-paralysis” of the marginal mandibular nerve may result. In this circumstance, the platysma acts as a lip depressor, but intact lip eversion (from intact mentalis function) indicates that the marginal mandibular nerve is functional.

Great Auricular Nerve Injury

Injury to the great auricular nerve may occur in up to 6 to 7 percent of face lifts, with resultant lobular numbness. If injury is identified at the time of the procedure, epineurial repair is recommended. Surgical decompression can be considered in cases of neurapraxia that persists after rhytidectomy.

Facial Edema and Ecchymosis

A Cochrane review from 2014 indicates that there is no clear benefit to corticosteroid use for reduction in facial edema and ecchymosis following facial plastic surgery. A study using lymphoscintigraphy after one of three face-lift techniques (i.e., subcutaneous, SMASectomy, or high-SMAS composite) demonstrated no differences in lymphatic drainage patterns, with complete return to baseline drainage patterns at 6 months postoperatively.

Arnica montana

Arnica montana contains the anti-inflammatory compound helenalin. Prospective randomized trials are inconclusive with respect to the benefit the herb has on ecchymosis and edema reduction after face lift.

Bromelain

Bromelain, a mixture of enzymes derived from the core and juice of pineapples, is an herbal supplement used to reduce postoperative edema and ecchymosis. Its use following rhytidectomy has not been evaluated. Its efficacy in reducing postoperative edema reduction has been confirmed in a prospective, randomized, double-blind, placebo-controlled trial following orthognathic surgery.

Pixie-Ear Deformity

Pixie ear results from excessive tension placed on the lobule during skin flap inset. The best technique for treatment is prevention. (See Video, Supplemental Digital Content 4, which demonstrates a technique for skin flap inset that consistently results in minimal skin tension and avoidance of the pixie-ear deformity. This video is available in the “Related Videos” section of the full-text article on PRSJournal.com or at http://links.lww.com/PRS/B911.)

Skin Flap Necrosis

Excessive subcutaneous thinning and tension on inset can predispose to skin necrosis and slough. This most commonly occurs in the postauricular location. To help avert this problem, the initial postauricular incision is carried down to the level of the sternocleidomastoid fascia before inferior undermining. Evidence clearly associates smoking with an increased risk of skin flap necrosis.
The transverse facial artery perforator, as opposed to the SMAS flap, may be responsible for the majority of lateral skin flap perfusion. When ligated, a reduction in preauricular skin perfusion is noted.87

Parotid Fistulae
Exposed/divided parotid tissue should be cauterized to seal off ductules, followed by closure of the SMAS atop the deficit. Aspiration, scopolamine patches, and botulinum toxin have been used with success for smaller, established pseudocysts. Closed suction drainage may be needed for larger pseudocysts.88-90

OUTCOMES: EMPHASIZING THE PATIENT’S PERSPECTIVE
Several authors have presented face-lifting outcomes assessments.91-96 The only available systematic review on the topic was published in 2011.96 No differences in surgeon- or researcher-perceived outcome or complication rates were identified among the various techniques reviewed. A valid, reliable tool for the evaluation of patient satisfaction was not used. Future discussions should focus on the technique that reliably and consistently produces high scores in one’s hands while using the most useful and valid tool currently available to assess patient perception of outcome after face lifting, the FACE-Q.97-103

Mark A. Codner, M.D.
Mark Codner M.D. Plastic Surgery
1800 Howell Mill Road, Suite 140
Atlanta, Ga. 30318
macodner@gmail.com

PATIENT CONSENT
Dr. Codner reports that he has written consent for use of the patients’ images.

REFERENCES

166e
75. Seeley BM, Denton AB, Ahn MS, Maas CS. Effect of homeopathic *Arnica montana* on bruising in face-lifts: Results of a randomized, double-blind, placebo-controlled clinical trial. *Arch Facial Plast Surg.* 2006;8:54–59.